Accelerated first-order methods for large-scale convex minimization
نویسنده
چکیده
This paper discusses several (sub)gradient methods attaining the optimal complexity for smooth problems with Lipschitz continuous gradients, nonsmooth problems with bounded variation of subgradients, weakly smooth problems with Hölder continuous gradients. The proposed schemes are optimal for smooth strongly convex problems with Lipschitz continuous gradients and optimal up to a logarithmic factor for nonsmooth problems with bounded variation of subgradients. More specifically, we propose two estimation sequences of the objective and give two iterative schemes for each of them. In both cases, the first scheme requires the smoothness parameter and the Hölder constant, while the second scheme is parameter-free (except for the strong convexity parameter which we set zero if it is not available) at the price of applying a nonmonotone backtracking line search. A complexity analysis for all the proposed schemes is given. Numerical results for some applications in sparse optimization and machine learning are reported, which confirm the theoretical foundations.
منابع مشابه
MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization
Composite convex optimization models arise in several applications, and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most widely used algorithms for convex composite models are accelerated first order methods, however they can take a large number of iterations to compute an acceptable solution for larg...
متن کاملFirst-Order Methods for Nonsmooth Convex Large-Scale Optimization, II: Utilizing Problem’s Structure
We present several state-of-the-art first-order methods for well-structured large-scale nonsmooth convex programs. In contrast to their black-boxoriented prototypes considered in Chapter 5, the methods in question utilize the problem structure in order to convert the original nonsmooth minimization problem into a saddle-point problem with a smooth convex-concave cost function. This reformulatio...
متن کاملDistributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity
We study distributed optimization algorithms for minimizing the average of convex functions. The applications include empirical risk minimization problems in statistical machine learning where the datasets are large and have to be stored on different machines. We design a distributed stochastic variance reduced gradient algorithm that, under certain conditions on the condition number, simultane...
متن کاملAn Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP
The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm mini...
متن کاملOptimized first-order methods for smooth convex minimization
We introduce new optimized first-order methods for smooth unconstrained convex minimization. Drori and Teboulle [5] recently described a numerical method for computing the N-iteration optimal step coefficients in a class of first-order algorithms that includes gradient methods, heavy-ball methods [15], and Nesterov's fast gradient methods [10,12]. However, the numerical method in [5] is computa...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016